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[1] The hydrologic response of upland watersheds is strongly controlled by soil (regolith)
thickness. Despite the need to quantify soil thickness for input into hydrologic models,
there is currently no widely used, geomorphically based method for doing so. In this paper
we describe and illustrate a new method for predictive mapping of soil thicknesses
using high-resolution topographic data, numerical modeling, and field-based calibration.
The model framework works directly with input digital elevation model data to predict soil
thicknesses assuming a long-term balance between soil production and erosion. Erosion
rates in the model are quantified using one of three geomorphically based sediment
transport models: nonlinear slope-dependent transport, nonlinear area- and slope-
dependent transport, and nonlinear depth- and slope-dependent transport. The model
balances soil production and erosion locally to predict a family of solutions corresponding
to a range of values of two unconstrained model parameters. A small number of field-
based soil thickness measurements can then be used to calibrate the local value of those
unconstrained parameters, thereby constraining which solution is applicable at a particular
study site. As an illustration, the model is used to predictively map soil thicknesses in
two small, �0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid
drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field
observations and calibration data indicate that the nonlinear depth- and slope-dependent
sediment transport model is the most appropriate transport model for this site. The
resulting framework provides a generally applicable, geomorphically based tool for
predictive mapping of soil thickness using high-resolution topographic data sets.
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1. Introduction

[2] Soil thickness exerts a first-order control on the
hydrologic response of upland watersheds. Relatively thin
soils are more prone to saturated overland flows compared
to thicker soils which have greater water storage potential.
Sensitivity studies of numerical models illustrate the impor-
tance of soil thickness in controlling infiltration rates
[Woolhiser et al., 2006]. Field studies show a significant
inverse correlation between water residence time and terrain
steepness [McGuire et al., 2005]. This inverse correlation
likely reflects the increased hydrologic gradient on steeper
slopes, but also the effect of generally thinner soils on
steeper terrain. Hydrologic models require spatially distrib-
uted input data for soil thickness when applied to upland
(i.e., soil over bedrock) landscapes. However, there is
currently no widely used method for estimating soil thick-
nesses using readily available data. As a result, hydrologic
modelers often extrapolate from simple empirical relation-

ships between soil thickness and terrain parameters based
on a limited number of field measurements [e.g., Moore et
al., 1993]. In the hydrologic model developed for infiltra-
tion at Yucca Mountain, for example, soil thicknesses were
assumed to be inversely proportional to the slope gradient
[Civilian RadioactiveWasteManagement SystemManagement
and Operating Contractor, 2000]. Process-based geomor-
phic modeling of soil thickness [e.g., Dietrich et al., 1995],
however, in addition to measured soil thicknesses in several
well-documented drainage basins [Heimsath et al., 1997,
1999], indicates that soil thicknesses are most closely asso-
ciated with hillslope curvature. More complex relationships
between soil thicknesses and various combinations of slope,
curvature, and contributing area are possible and will be
discussed in this paper. However, the discrepancy between
the slope-dependent assumption of the Yucca Mountain
model and the curvature-dependent results of geomorphi-
cally based studies underlines the need for a better process-
based understanding of how soil thickness is controlled by
topography, with the ultimate goal being to construct a
broadly applicable, geomorphically based method for esti-
mating soil thicknesses that honors the complexity of
geomorphic processes and the multiscale heterogeneity of
real landscapes.
[3] Dietrich et al. [1995] and Roering [2008] developed

the first geomorphically based models for mapping soil
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thickness variations in upland watersheds. Predictive map-
ping of soil thicknesses was the explicit goal of the Dietrich
et al. [1995] study, while Roering [2008] modeled soil
thicknesses within the context of a broader study aimed at
understanding the feedbacks between soil thicknesses and
hillslope form. As such, the approach of Roering [2008]
was not explicitly proposed as a method for mapping soil
thickness but his approach does predict soil thickness using
modern high-resolution topographic data as input and hence
should be considered as a possible geomorphically based
method for this purpose. Both models calculate soil thick-
ness as the difference between soil production and erosion
using numerical landscape evolution models that begin with
the modern topography (e.g., lidar-derived digital elevation
models (DEMs)) and an assumed initial soil thickness.
These models then simulate landscape development forward
in time subject to a prescribed tectonic uplift rate. Dietrich
et al. [1995], evolved the landscape forward in time for
15 ka, based on the assumption that initial soil development
at that study site began in early Holocene time. Roering
[2008] simulated the landscape forward in time for 0.5 Ma
until a topographic steady state condition was achieved.
Dietrich et al. [1995] assumed soil transport was to be
proportional to the local hillslope gradient. Research in the
past decade, however, has emphasized the importance of
nonlinear slope-dependent transport on steep slopes [e.g.,
Roering et al., 1999] as well as depth-dependent transport,
i.e., thick soils on hillslopes dominated by creep and
bioturbation often have higher rates of sediment flux com-
pared to thin soils [e.g., Gabet, 2000; Heimsath et al.,
2005]. As such, Roering [2008] expanded the Dietrich et
al. [1995] approach to include a nonlinear depth- and slope-
dependent transport model. The resulting maps of soil
thickness generated by these models provide a process-

based prediction of how soil thicknesses vary across the
landscape. Both methods have limitations, however.Dietrich
et al. [1995] used themodern lidar data as the initial condition
for the model at 15 ka, together with an assumed initial soil
thickness at that time. The initial ‘‘age’’ of upland land-
scapes is generally not well constrained, however. Roering
[2008] assumed topographic steady state with a prescribed
uplift rate. This assumption is valid for some locations but
does not hold generally. In this paper we describe a method
that calculates soil thicknesses directly from the modern
topographic data without iteration through time and without
requiring a topographic steady state condition. The model
contains only two ‘‘free’’ parameters that require site-
specific calibration.

2. Background

[4] Hillslopes in upland terrain are composed of a system
of two interacting surfaces: the topographic surface, with
elevations given by z(x, y), and the underlying weathering
front, given by b(x, y) (Figure 1). The difference between
these two surfaces is the soil or regolith thickness, h(x, y).
The topographic and weathering front surfaces are strongly
coupled because the shape of the topography controls
erosion and deposition, which, in turn, changes the values
of h(x, y) [Furbish and Fagherazzi, 2001; Mudd and
Furbish, 2006]. The values of h(x, y), in turn, control
bedrock weathering/soil production rates. The simplest
system of equations that describes this feedback relationship
between topography, soil thickness, and the rate of increase
of soil thickness is given by:

@h

@t
¼ rb

rs

P0

cos q
e�h cos q=h0 þ Dr2z ð1Þ

Figure 1. (a) Schematic diagram of a hillslope profile from divide to channel head. (b) Models for the
relationship between soil production rate and soil thickness, illustrating the exponential model of
Heimsath et al. [1997] and an alternative ‘‘humped’’ model based upon a particular form of the function
proposed by Furbish and Fagherazzi [2001].
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@z

@t
¼ Dr2zþ U ð2Þ

z ¼ bþ h ð3Þ

where t is time, rb is the bedrock density, rs is the sediment
density, P0 is the maximum bedrock lowering rate on a flat
surface, q is the slope angle, U is the rock uplift rate, D is
the hillslope diffusivity, and h0 is a characteristic soil depth
[Heimsath et al., 1997, 2001]. Equations (1)–(3) state that
the rate of change of soil thickness with time is the
difference between a ‘‘source’’ term proportional to the rate
of soil production associated with the bedrock surface
lowering and a ‘‘sink’’ term equal to the curvature of the
topographic profile. The cos q dependence in (2) originates
from the fact that soil production is an exponential function
of soil thickness normal to the surface [Heimsath et al.,
2001]. The curvature-based erosion model in (3) is the
classic diffusion model of hillslope evolution, first proposed
by Culling [1960, 1963]. Equations (1)–(3) can be solved
for the steady state case in which soil thickness is
independent of time:

h ¼ h0

cos q
ln

rb
rs

P0

D cos q
1

�r2z

� �
ð4Þ

Note that steady state in this context does not mean that the
topography is in steady state, but, rather, that the soil
thickness does not change through time as the landscape is
denuded (i.e., a ‘‘soil thickness steady state’’ condition).
Equation (4) suggests that given a very accurate map of
topography, soil thicknesses can be estimated if the values
of h0 and rbP0/rsD are known. Alternatively, calibration
data for observed soil thicknesses can be used to infer the
local value of rbP0/rsD if h0 is known. The analysis of in
situ cosmogenic isotopes indicates that the value of h0 (the
soil thickness at which bedrock lowering falls to 1/e of its
maximum value) is approximately 0.5 m for several well-
studied sites around the world [e.g., Heimsath et al., 1997,
1999, 2001].
[5] Evidence suggests that the diffusion model of hill-

slope evolution (equation (3)) has very limited application
to most upland hillslopes [e.g., Roering et al., 1999; Gabet,
2000; Heimsath et al., 2005]. In steep landscapes, sediment
flux increases nonlinearly with slope gradient as the angle
of stability is approached. Steep, planar hillslopes and abrupt,
knife edge drainage divides are a signature of landslide
dominated, nonlinear transport on hillslopes [Roering et al.,
1999, 2001; Roering, 2004]. In addition to the nonlinear
slope dependence of hillslope transport processes, there are
also processes that require an area and soil depth depen-
dence as well. Braun et al. [2001] proposed three end-
member models of sediment transport in their study of the
coevolution of process and form in evolving hillslopes:
slope-dependent, contributing area- and slope-dependent,
and depth- and slope-dependent transport. In this paper,
we include the same three end-member models, updated to
include the nonlinear slope dependence documented by

Roering et al. [1999]. We consider the nonlinear slope-
dependent (NSD) model given by

@z

@t
¼ D1r � rz

1� rzj j=Scð Þ2

 !
þ U ð5Þ

and the nonlinear area- and slope-dependent (NASD) model
given by

@z

@t
¼ D2r � Amrz

1� rzj j=Scð Þ2

 !
þ U ð6Þ

where A is the contributing area (a proxy for runoff), m is an
empirical exponent, and Sc is the tangent of the angle of
stability. Contributing area on hillslopes is calculated using
a multiple-flow direction algorithm [Freeman, 1991].
Equation (5) is generally used for erosion dominated by
processes occurring on the surface that have no dependence
on area, such as rain splash. The NSD model can have
broader applicability, however, (i.e., at sites dominated by
creep, bioturbation, and mass movements) provided that the
soils are uniformly thicker than the thickness of the layer
undergoing transport. In such cases, the NSD model can be
applicable because the system does not operate within the
range of soil thicknesses where depth dependence is
significant. Area-dependent transport models such as (6)
are generally used for erosion dominated by sheet flow
and/or rilling. Equation (6) combines area-dependent flux
with nonlinear slope-dependent transport. Although area-
dependent transport and nonlinear slope-dependent trans-
port have not been combined in the form of (6) previously,
a nonlinear increase in sediment flux with slope is just as
likely to occur in a steep hillslope dominated by rilling,
overland flow, and mass movements as in a steep hillslope
dominated by area-independent processes such as creep. As
such, the combination of the two models in form of (6) is
appropriate. Historically, the NSD model has been the most
commonly used transport model in hillslope studies, but its
application to hillslopes dominated by freeze-thaw creep
and bioturbation has been questioned by a number of recent
studies [Gabet, 2000; Gabet et al., 2003; Heimsath et al.,
2005; Yoo et al., 2005]. These studies have clearly shown
that depth-dependent transport models are more appropriate
in areas dominated by those processes. The nonlinear depth-
and slope-dependent (NDSD) model combines the depth
dependence advocated by these studies with the nonlinear
slope dependence of Roering et al. [1999, 2001] and
Roering [2004] to give

@z

@t
¼ D3r � hnrz

1� rzj j=Scð Þ2

 !
þ U ð7Þ

where hn is the soil thickness normal to the surface.
Equation (7) is not appropriate for very thick soils (i.e.,
more than several meters) because the sediment flux cannot
continue to increase indefinitely as soil thickness increases
(unless the hillslope is near the angle of stability and hence
capable of transporting the entire soil profile by mass
movement). More complex depth-dependent models that
include a depth-saturation effect [e.g., Roering, 2008] are
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available that can be used in cases where the soil is very
thick. As we will show, each of these transport models
(equations (5)–(7)) predicts distinctly different relationships
between soil thickness and landscape position for a given
hillslope form. As such, calibration data can be used to
constrain which transport relationship is most applicable for
a particular study site if the topography is well constrained.
[6] Equation (2) states that bedrock lowering is a maxi-

mum for bare bedrock slopes and decreases exponentially
with increasing soil thickness. This exponential relationship
has been inferred from cosmogenic isotope analyses on
hillslopes [Heimsath et al., 1997, 1999]. Conceptually, this
relationship represents the buffering effect that soil has on
underlying bedrock, protecting it from diurnal temperature
changes and the infiltrating runoff that drive physical and
chemical weathering. The exponential soil production func-
tion may not capture the full complexity of soil production,
however. As soil thickness decreases below a critical value
in arid and semiarid regions, the landscape may be unable to
store enough water to promote weathering or support plant
life. Plants act as weathering agents (e.g., root growth can
fracture rock, canopy cover can decrease evaporation, etc.).
As such, in some arid and semiarid environments weather-
ing rates may increase with increasing soil thickness for thin
soils, a behavior inconsistent with the exponential model. A
humped or bell-shaped relationship of soil production to soil
thickness (Figure 1b) has been theorized for decades
[Ahnert, 1977; Cox, 1980; Dietrich et al., 1995; Anderson
and Humphrey, 1989; Furbish and Fagherazzi, 2001;
Minasny and McBratney, 1999, 2006]. Recent cosmogenic
radionuclide data from granitic landscapes in Australia
provide support for a humped production model [Heimsath,
2006]. Using a humped production model in landscape
evolution models reproduces landscapes with a bimodal
distribution of slopes similar to many arid region hillslopes
[Anderson and Humphrey, 1989; Strudley et al., 2006]. As
such, a humped production function is most likely to be
valid in study sites with a bimodal distribution of slopes and
a high density of exposed bedrock with limited vegetation
cover. Here we use a humped production function given by
the form

@h

@t
¼ rb

rs

P0

cos q
h

h0
e�h cos q=h0 þ Dr2z ð8Þ

and plotted in Figure 1b for the simple case of a flat slope
with U = 0. The method we develop does not depend on this
specific form of the humped production function, however,
and other forms may be used. Whether the soil production
function is exponential or humped most likely depends on
the study area. We will consider both possibilities in this
paper.

3. Model Description

3.1. Two-Dimensional Modeling of Soil Thickness
on Synthetic Hillslopes

[7] To gain a qualitative understanding of how soil
thickness varies as a function of landscape position and to
understand the challenges involved in predicting soil thick-
ness in 3-D landscapes, we first consider a 2-D version of
the model applied to synthetic hillslope profiles. For sim-

plicity, we also consider the exponential soil production
function only in this section. The simplest relationship
between topography and soil thickness is obtained by
assuming topographic steady state and spatially uniform
tectonic uplift. In this case, bedrock weathering must keep
pace with a constant, uniform rate of uplift. This implies
[Roering, 2008]

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����2

s
exp � h

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xj j2

q� �
2
664

3
775 ¼ U ð9Þ

In (9) we used cosq = 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xj j2

q
in order to express

all of the topographic controls in terms of z and its
derivatives. The solution to (9) is [Roering, 2008]

h ¼ h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����2

s ln
P0

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����
2

s0
@

1
A ð10Þ

Equation (10) states that in topographic steady state, soil
thicknesses are a function of slope only (not curvature) and
are independent of the sediment transport process acting on
the slope. Equation (10) can also be applied in three
dimensions by replacing j@z/@xj with jrzj. In order to apply
(10) to a particular landscape, a high-resolution DEM must
be first be used to compute the slope gradient terms.
Second, a range of values of the ratio P0/U must be input
into (10), resulting in a family of solutions corresponding
to each value of P0/U. Finally, field-based calibration data
for soil thickness can then be used to constrain which
value of P0/U is most appropriate for a given study area.
Equation (10) provides a useful starting point for modeling
soil thicknesses, but the assumption of topographic steady
state with spatially uniform uplift is not generally applicable.
[8] The soil thickness steady state condition used in this

paper assumes a balance between soil production and erosion
at every point on the landscape. No constraint is placed on
erosion rates (spatially or temporally) under this condition.
Soil profiles operating under the exponential soil production
function model tend to evolve toward steady state soil
thickness because of the inverse relationship between soil
production rate and soil thickness. A soil profile governed
by this inverse relationship will tend to evolve back toward
a steady state soil thickness condition if perturbed away
from that state because a perturbation that causes local soil
thinning will trigger an increase in soil production rates,
driving the system back toward the original soil thickness in
order to maintain a balance between production and erosion.
If the NDSD model is applicable at a given site, this negative
feedback mechanism is even stronger because a perturbation
that thins the soil locally will simultaneously increase pro-
duction and decrease erosion, thus promoting a return to
thicker soils. Because of this negative feedback relationship,
the soil thickness steady state condition is the state toward
which many hillslope systems naturally evolve. The exis-
tence of this negative feedback does not guarantee that an
equilibrium condition exists (e.g., the soil thickness could
oscillate around, but never reach, an equilibrium value), but
it makes an equilibrium condition more likely to exist. In the
case of a hillslope dominated by the humped production
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function, greater landscape instability can be expected
[Furbish and Fagherazzi, 2001], and the conditions under
which a soil thickness steady state condition occur are not
well constrained. It is difficult to prove the existence of a
soil thickness steady state condition precisely at a given
study site. Despite this difficulty, it is common in the
geomorphic literature to assume that this condition is met.
For example, studies that measure erosion rates using the
abundance of cosmogenic radionuclides produced in situ in
bedrock assume a soil thickness steady state condition
[Heimsath et al., 1997, 1999, 2001]. These studies argue
that systematic deviations from soil thickness steady state
would yield trends in their data that have not been observed
[e.g., Heimsath et al., 2001].
[9] First we consider the NSD and NASD models ((5)

and (6)) within the context of the soil thickness steady state
condition. The equation for the rate of change of soil
thickness for these models is given by

@h

@t
¼ rb

rs
P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����
2

s
exp � h

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xj j2

q� �
2
664

3
775þ @z

@t
� U

ð11Þ

where @z/@t is given by

@z

@t
¼ D1

@

@x

@z=@x

1� @z

@x

�
Sc

� �2

0
BBB@

1
CCCAþ U ð12Þ

for the NSD model and

@z

@t
¼ D2

@

@x

xm=2@z=@x

1� @z

@x

�
Sc

� �2

0
BBB@

1
CCCAþ U ð13Þ

for the NASD model. Equation (13) assumes that the
distance from the divide, x, scales with the square root of
drainage area, A, in order to reduce the 3-D model to two
dimensions. Generally speaking, scaling the distance from
the divide to drainage area introduces an additional
parameter related to the basin shape, but here we assume
that this parameter is subsumed within the transport
coefficient D2. The analytic solution to (11), assuming
steady state soil thickness, is given by

h ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����
2

s
ln � rb

rs

P0

@z=@t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����
2

s0
@

1
A ð14Þ

Equations (12)–(14) illustrate that soil thickness, even in
the simplest and most idealized transport models, is a
complex combination of slope, curvature, and, in cases of
overland flow or rilling, landscape position. As such,
empirical models that predict soil thickness as a function of
slope gradients only are unlikely to capture the full
complexity of soil thickness variations (unless topographic
steady state applies).

[10] The equation for the NDSD model is given by

@h

@t
¼ rb

rs
P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
����2

s
exp � h

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xj j2

q� �
2
664

3
775

þ D3

@

@x

h
@z

@x

1� @z

@x

�
Sc

� �2

0
BBB@

1
CCCA ð15Þ

Equation (15) is more challenging to solve than (14)
because h cannot be isolated algebraically. Equation (15)
can be solved numerically, however, by representing the
hillslope as a discrete set of points. In this approach, the first
step is to solve for the soil thickness at the divide, hd, by
balancing soil production and erosion at that point and
utilizing the fact that the slope gradient is equal to zero at
divides. This gives

rb
rs

P0e
�hd=h0 ¼ D3hd

@2z

@x2

����
����
x¼0

ð16Þ

Equation (16) is a transcendental equation that can be
solved numerically using a root-finding technique. Once the
soil thickness at the divide is known, the soil thickness at
the next downslope point, h1, can be computed in a similar
way using a discretized version of (16):

rb
rs

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
1

����
����
2

s
exp � h1

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xj1

�� ��2q� �
2
664

3
775

0
BB@

1
CCA

¼ D3

Dx

h1
@z

@x

����
1

1� @z

@x

����
����
1

�
Sc

� �2

0
BBB@

1
CCCA ð17Þ

where

@z

@x

����
i

¼ ziþ1 � zi

Dx
ð18Þ

The simplest root-finding technique is a brute force method
in which all possible values of hd and h1 are input into (17)
and (18), respectively, in order to determine the values of hd
and h1 that minimize the difference between the left and
right sides of those equations. In this paper, the values of
soil thickness at each point are assumed to be between zero
and some maximum prescribed depth in increments of 1 cm.
This approach requires evaluating (17) and (18) several
hundred times for each point on a landscape in order to find
the values of h that balance production and erosion at every
point. Points farther downslope from h1 can be computed
using a more general discretized version of (17), i.e.

rb
rs

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

����
i

����
����
2

s
exp � hi

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z=@xji

�� ��2q� �
2
664

3
775

¼ D3

Dx

hi�1

@z

@x

����
i�1

1� @z

@x

����
����
i�1

�
Sc

� �2
�

hi
@z

@x

����
i

1� @z

@x

����
����
i

�
Sc

� �2

0
BBB@

1
CCCA ð19Þ
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