Nonlinear slope-dependent sediment transport in cinder cone evolution

Jon D. Pelletier* Michael L. Cline Department of Geosciences, University of Arizona, Gould-Simpson Building, 1040 East Fourth Street, Tucson, Arizona 85721–0077, USA

ABSTRACT

Sediment flux on transport-limited hillslopes is well known to vary nonlinearly with slope, diverging as the angle of stability is approached. To date, however, no study has validated the precise form of the nonlinear slope-dependent transport model over geologic time scales in a non-steady-state landform. In this paper, we show how cinder cones can be used to validate the nonlinear transport model using Lathrop Wells cinder cone in Nye County, Nevada, as a type example. Cinder cones are well suited for this purpose because they can be radiometrically dated and their angles of stability can be constrained by measurement of subsurface contacts between primary fallout and overlying colluvial deposits reworked from upslope. Forward model results with a generalized, nonlinear transport model characterized by diffusivity, κ, and nonlinear exponent, n, show that the evolution of the cone rim and base are most sensitive to κ, while the cone midpoint is most sensitive to n. Analyses of the full cone shape, therefore, permit the two model parameters to be independently inferred if the cone age and angle of stability are independently known. Results for Lathrop Wells imply that $n = 2$ in the generalized, nonlinear transport model, which is consistent with Roering et al.'s (1999) widely used form of that model.

Keywords: hillslope evolution, nonlinear diffusion, cinder cones, numerical model.

INTRODUCTION

The evolution of transport-limited hillslopes is a classic problem in geomorphology. Culling (1960, 1963) first proposed the use of the diffusion equation to model the evolution of gently sloping hillslopes subject to stepwise transport processes such as creep, rainsplash, and bioturbation. The diffusion model in its simplest form is limited in two primary ways, however. First, it fails to account for regolith-depth-dependent transport processes (Gabet, 2000; Heimsath et al., 2005); hence it is best applied to landforms with a thick cover of unconsolidated material. Second, the diffusion model fails to account for the increase in sediment flux as hillslopes steepen and mass movements become the dominant mode of transport. Mass movements can be quantified with a nonlinear increase in sediment flux as the angle of stability is approached. Most nonlinear hillslope-evolution models that aim to model both gentle-sloping and steep terrain, therefore, follow the general form

$$\frac{\partial h}{\partial t} = \nabla \cdot q_s = \kappa \nabla \cdot \left(\frac{\nabla h}{1 - (\nabla h/\nabla S)^{1-\frac{1}{S_c}}} \right).$$

where h is elevation, t is time following the initial condition, q_s is sediment flux, κ is the diffusivity constant, and S_c is the tangent of the angle of stability. Equation 1 reduces to the diffusion equation for $|\nabla h| << S_c$. For $|\nabla h| = S_c$, Equation 1 predicts nonlinearly increasing sediment flux as S_c is approached. The exponent n quantifies how quickly the transition between linear and nonlinear slope-dependent processes occurs (Fig. 1A).

In the context of pluvial shoreline and fault-scarp evolution, Andrews and Hanks (1985) used Equation 1 with $n = 1$, while Andrews and Bucknam (1987) and Mattson and Bruhn (2001) adopted $n = 2$. Small-scale experiments, post-disturbance sediment-yield data, and analyses of steady-state hillslope morphology all support the value $n = 2$ (Roering et al., 1999; 2001a, 2001b; Gabet, 2003; Roering and Gerber, 2005). Recent theoretical modeling, however, suggests that n may be a function of the depth profile of sediment in motion (Roering, 2004) and hence may not be universal. High-magnitude earthquakes could initiate flow deeper in the regolith profile, for example, resulting in lower values of n. Also, no study has conclusively verified Equation 1 for any particular value of n for a non-steady-state landform. The distinction between steady-state and non-steady-state landforms is significant because topographic steady state is difficult to verify at the hillslope scale and because certain non-steady-state conditions can predict the same hillslope morphologies in the linear diffusion model as occur in the nonlinear model under the assumption of steady state (Jimenez-Hornera et al., 2005). Studies of fault and pluvial shoreline scarps have successfully used Equation 1 for many years, but linearly slope-dependent transport models have also been successful in characterizing scarp evolution (e.g., Pelletier et al., 2006), largely because the local angle of stability in fault and shoreline scarps is not precisely known.

In this paper, we show how analyses of cinder cone morphometry provide a unique opportunity to calibrate all of the parameters of the nonlinear slope-dependent transport model for a non-steady-state landform. Cinder cones are ideal natural laboratories for studying hillslope evolution in steep terrain because they can be radiometrically dated, their angles of stability can be inferred directly from subsurface contacts, and because they form at or near the angle of stability. In addition, cinder cones are comprised of well-sorted, cohesionless parent material, thus minimizing the influence of textural variability on model inference.

NUMERICAL MODEL

For radially symmetric landforms, Equation 1 becomes

$$\frac{\partial h}{\partial t} = \frac{\kappa}{r} \frac{\partial}{\partial r} \left(\frac{r \frac{\partial h}{\partial r}}{1 - \left(\frac{\partial h}{\partial r}/S_c\right)^{1-\frac{1}{S_c}}} \right)^n,$$

where r is the distance from the center of the landform. Equation 2 can be readily solved numerically using upwind differencing in space and a predictor-corrector method in time (Press et al., 1992). Hooper and Sheridan (1998) first modeled cone evolution using linear and nonlinear slope-dependent transport models. These authors compared the modeled midpoint slope to measured values on cones of different ages, but they did not interpret or analyze the entire cone shape.

Figure 1B illustrates the evolution of a cinder cone evolving according to Equation 1 with an initial slope of 32.99°, $n = \infty$, and $S_c = 33°$ at $\kappa = 100$, 200, 400, ... 3200 m². The initial shape is further defined by an initial cone radius r_s, rim radius r_r, and colluvial fill radius r_f (equal to 350, 100, and 50 m, respectively, in Figures 1B and 1C). In the limit $n = \infty$, Equation 2 reduces to the linear diffusion equation because the initial slope angle is below the angle of stability everywhere along the profile, and nonlinearity only occurs when the slope angle equals...
tan⁻¹(S_c) in that limit. In this case, erosion and deposition are concentrated at the cone rim and base where the curvatures are greatest. For cones younger than κt ≈ 1000 m², the midpoint slope angle is unchanged from its initial value. As a validation of the numerical model, the results in Figure 1B were compared with those of semi-analytical solutions to the linear diffusion equation obtained with a Fourier-Bessel series expansion (Appendix DR1 in the GSA Data Repository). Figure 1C illustrates the modeled cone evolution for the same initial condition as Figure 1B, but with n = 2. In this case, rounding of rim and base is accompanied by a slope “rotation” component driven by nonlinear transport close to the angle of stability. These results suggest that the relationship between sediment flux and slope can be inferred from an analysis of the full cone shape, if the age of the cone and the angle of stability are known (thereby reducing a four-parameter model to a two-parameter model). Figure 1 shows that the value of κ is most sensitive to the degree of rounding at the rim and base of the cone, while the value of n is most sensitive to the extent of slope rotation at the cone midpoint.

APPLICATION TO LATHROP WELLS, NYE COUNTY, NEVADA

Lathrop Wells cone has been the subject of intense study as a natural analog site for a potential volcanic eruption through the proposed nuclear waste repository at Yucca Mountain. The cone, radiometrically dated to be 77 ka (Heizler et al., 1999), is located near the southern boundary of the Nevada Test Site in Nye County, Nevada. Field observations indicate that most of the cone was deposited during one major, violent, Strombolian eruption phase (Valentine et al., 2005). The cone is predominantly

Figure 1. A: Plot of normalized sediment flux versus normalized slope for the nonlinear slope-dependent transport model (Equation 1). The value of the exponent n in this model characterizes how rapidly nonlinear transport increases sediment flux as the angle of stability, S_c, is approached. B: Plots of radial-profile evolution of a cinder cone evolving according to Equation 1 with n = ∞ and an initial morphology similar to Lathrop Wells cone. The evolution is characterized by rounding of the cone rim and base (where curvature is concentrated) and stability of the midpoint for times less than κt ≈ 1000 m². C: Same as B but with n = 2. In this case, rounding of rim and base is accompanied by a slope “rotation” component driven by nonlinear transport close to the angle of stability. D: Relationship between midpoint slope and 1/n for a cone with an initial geometry similar to Lathrop Wells cone, an initial angle of 33°, and an age of κt = 300 m².
composed of loose, well-sorted, vesicular scoria lapilli with a median grain diameter of 8 mm (SNL, 2007). Eolian sand deposits occur locally near the base of the cone, but overall, the coarse texture and general absence of significant eolian dust deposition minimize runoff generation, water storage in the subsurface, and vegetation cover on the cone. As such, the dominant transport mechanism is most likely seismically induced dry ravel. This hypothesis is supported by observations of lentically shaped, inversely graded, avalanche deposits exposed near the base of the cone (SNL, 2007). Seismicity in the Yucca Mountain region has been well documented (CRWMS M&O, 1998), including displaced or disturbed alluvial and colluvial deposits of late Quaternary age on nine faults and the 1992 M5.6 Little Skull Mountain earthquake that occurred 11 km from Lathrop Wells. The only significant microtopographic features on Lathrop Wells are the large-scale “ripples” oriented parallel to contour lines, called garlands, which have heights of several decimeters, wavelengths of five to ten meters, and crestlines composed of preferentially coarse tephra (Fig. 2D). The origin of these features is not precisely known, but laboratory studies of granular materials subject to horizontal vibration commonly form texturally segregated, ripple-like bedforms similar to garlands (Ciamarra et al., 2005).

Perry et al. (1998) dug an east-west–oriented trench near the cone rim and observed the contact between primary fallout deposits and reworked colluvial deposits to be 33°. This contact preserves the initial angle of the slope immediately following eruption and provides an important data point for our analysis because it directly constrains the angle of stability of the cone, \(\tan^{-1}(S_c) \). By comparing the present-day midpoint slope to the initial angle of 33°, we can infer the extent of the slope “rotation” component of cone evolution, illustrated in Figure 1C, which, in turn, is diagnostic of the nonlinear portion of the sediment-flux relationship plotted in Figure 1A. It should be noted that trenches of fault and pluvial shoreline scarps may also preserve the initial scarp shape, but in those cases, the initial angle represents the angle of faulting or the angle of stability under continuous wave-cut action, neither of which may be equal to the angle of stability following scarp formation. The 33° angle measured by Perry et al. (1998) is coincident with the commonly assumed value for \(\tan^{-1}(S_c) \) in fault scarp and pluvial shoreline studies (e.g., Andrews and Hanks, 1985). Experiments show, however, that angles of stability in cohesionless material vary between 28° and 42°, depending on grain size and shape (Simons and Albertson, 1963); therefore, a direct measurement of the local value of \(S_c \) is necessary to be certain of the extent of slope rotation.

Figure 2. A: Location map of Lathrop Wells cone, Nye County, Nevada. Also shown is an image of digital elevation model (DEM) with cone and tephra-sheet extent identified in transparent overlay. B: Schematic cross section of cone rim along an east-to-west profile, showing location of trench and 33° contact between primary cone and reworked deposits (after SNL, 2007). C: Topographic (elevation and slope) transects of Lathrop Wells cone from east to west originatng at the cone center. The best-fit match between the model and observed profiles occurs for \(\kappa t = 300 \text{ m}^2 \) and \(n = 2 \). D: Aerial photograph of Lathrop Wells cone prior to extensive quarrying, showing principal surface features and locations of topographic transects used in the analysis (after SNL, 2007).

Manuscript received 23 April 2007
Revised manuscript received 2 July 2007
Manuscript accepted 15 July 2007
Printed in USA